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Abstract. A numerical procedure for the evaluation of the Bessoid canonical integral J (x, y) is
described. J (x, y) is defined, for x and y real, by

J (x, y) =
∫ ∞

0
J0(yt) t exp[i(t4 + xt2)] dt

where J0(·) is a Bessel function of order zero. J (x, y) plays an important role in the description
of cusped focusing when there is axial symmetry present. It arises in the diffraction theory of
aberrations, in the design of optical instruments and of highly directional microwave antennas
and in the theory of image formation for high-resolution electron microscopes. The numerical
procedure replaces the integration path along the real t axis with a more convenient contour in
the complex t plane, thereby rendering the oscillatory integrand more amenable to numerical
quadrature. The computations use a modified version of the CUSPINT computer code (Kirk et al
2000 Comput. Phys. Commun. at press), which evaluates the cuspoid canonical integrals and their
first-order partial derivatives. Plots and tables of J (x, y) and its zeros are presented for the grid
−8.0 � x � 8.0 and −8.0 � y � 8.0. Some useful series expansions of J (x, y) are also derived.

1. Introduction

The Pearcey function [1, 2], P(x, y), plays an important role in the uniform asymptotic theory
of cusped focusing (see [3, 4] for many relevant references). P(x, y) has the conditionally
convergent integral representation

P(x, y) =
∫ ∞

−∞
exp

[
i
(
t4 + xt2 + yt

)]
dt (1.1)

when x and y are real. It is an example of a cuspoid integral [3, 4].
In applications of the uniform asymptotic theory, it is necessary to compute P(x, y) and

its partial derivatives [3, 4]. Reference [5] described a contour-integral method in which the
integration path along the real t axis of equation (1.1) is replaced by a more convenient contour
in the complex t plane. This contour-integral method allowed the first practical application of
the uniform Pearcey approximation, which was to the theory of cusped rainbows in He+ + Ne
elastic scattering [6]. More recently, we have described a computer code [4] that is a modern
implementation in FORTRAN 90 of the contour-integral method. This code has the novel
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feature that the algorithm implements an adaptive contour procedure, choosing contours in
the complex plane that avoid the violent oscillatory and exponential natures of the integrand
and modifying its choice as necessary [4].

When axial symmetry is present, cusped focusing is characterized by a different
(conditionally convergent) canonical integral [7–12], which we write as

J (x, y) =
∫ ∞

0
J0(yt) t exp

[
i
(
t4 + xt2

)]
dt (1.2)

where x and y are real and J0(·) denotes the Bessel function of order zero [13]. We will call
(1.2) a Bessoid integral, or more precisely a Bessoid integral of type J , of order zero and of
degree four. Here J denotes the type of Bessel function in the integrand, zero is its order and
four is the degree of the polynomial in the exponent.

The purpose of this paper is to show how a modified version of our adaptive contour
algorithm [4] can be used for the numerical evaluation of J (x, y). In section 2, we first derive
some useful properties of J (x, y). Our numerical method is described in section 3, and results
for J (x, y) and its zeros are reported in section 4. Section 5 contains our concluding remarks.

An integral similar to (1.2) occurred in early work by Picht [7] on the diffraction theory
of aberrations, with the difference that the upper limit of infinity was replaced by a small
number (see also [8], p 153). In addition, the integral (1.2) with an upper limit of unity
arises in the theory of primary spherical aberrations for three-dimensional scalar lightwaves
[9, p 357]. Numerical values for πJ (x, y) were obtained by Pearcey and Hill using an early
digital computer, with the results reported in an unpublished monograph [10]. Their study was
motivated by the design of optical instruments and of highly directional microwave antennas.
In a letter to one of us (JNLC), dated 27 September 1982, Pearcey suggested applying the
contour-integral method [5] to J (x, y) in order to check the earlier computations he and Hill
had made (see section 4). Some preliminary calculations were indeed performed in 1982, but
the results not published.

More recently, J (x, y) has played an important role in the theory of image formation for
high-resolution electron microscopes [11, 12], in which 2J (x, y) represents the radial part of
the (undamped) impulse–response function at normalized defocus x. In [12], Janssen applies
the arguments of Paris [14] to obtain asymptotic results for a generalization of J (x, y) (see
section 5).

2. Properties of J(x, y)

This section derives some useful properties of J (x, y). We also examine in more detail the
special case y = 0.

2.1. Symmetry

Since J0(z) = J0(−z) [13, p 2], it follows from the integral representation (1.2) that J (x, y)
is even in y, that is

J (x, y) = J (x,−y). (2.1)

2.2. The Maclaurin series expansion

Next we derive a convergent series representation for J (x, y). Consider first the contour
0 → R → R exp(iπ/8) → 0 with R > 0. Since J0(z) is an entire function of z [13, p 1], the
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integrand of equation (1.2) contains no singularities and an integral taken around this contour
is zero by the Cauchy theorem. Furthermore, since [15, p 108, item (9.2.1)]

J0(z) ∼
|z|→∞

(
2

πz

)1/2

cos
(
z − 1

4π
)

+ exp(Im z)O

(
1

|z|
)

|arg z| < π (2.2)

the contribution from the arc R → R exp(iπ/8) tends to zero as R → ∞ by an application of
the Jordan lemma. We can therefore write

J (x, y) =
∫ ∞ exp(iπ/8)

0
J0(yt) t exp

[
i
(
t4 + xt2

)]
dt (2.3)

which is an absolutely convergent integral representation.
Next we substitute the Maclaurin series for J0(z) [15, p 104, item (9.1.12)] that is

J0(z) =
∞∑
k=0

(− 1
4

)k z2k

(k!)2
(2.4)

into equation (2.3) and interchange the summation and integration signs (which is justified by
the dominated convergence theorem of Lebesgue [16]), to obtain

J (x, y) =
∞∑
k=0

(−1)k

22k

y2k

(k!)2

∫ ∞ exp(iπ/8)

0
t2k+1 exp

[
i
(
t4 + xt2

)]
dt . (2.5)

To proceed further, we must evaluate the integrals in the series (2.5). Defining

Ik(x) =
∫ ∞ exp(iπ/8)

0
t2k+1 exp

[
i
(
t4 + xt2

)]
dt k = 0, 1, 2, . . . (2.6)

and making the substitution t = u exp(iπ/8), yields

Ik(x) = exp[i(k + 1)π/4]
∫ ∞

0
u2k+1 exp

[−u4 + exp(i3π/4)xu2
]

du k = 0, 1, 2, . . . .

(2.7)

Next we expand the term exp
[
exp(i3π/4)xu2

]
in a Maclaurin series, interchange the

summation and integration signs [16], and use the result∫ ∞

0
un exp

(−u4
)

du = 1
4�

(
1
4 (n + 1)

)
n = 0, 1, 2, . . .

to obtain

Ik(x) = exp[i(k + 1)π/4] 1
4

∞∑
�=0

exp (i3�π/4)

�!
�

(
1
2 (k + � + 1)

)
x� k = 0, 1, 2, . . . (2.8)

where �(·) is the gamma function. Substituting equation (2.8) into (2.5) yields, after
simplification,

J (x, y) = 1
4

∞∑
k=0

∞∑
�=0

exp[iπ(3�− 3k + 1)/4]

22k(k!)2�!
�

(
1
2 (k + � + 1)

)
x�y2k. (2.9)

Equation (2.9) is an absolutely convergent double-series representation for J (x, y).
It is tempting (as was done in [10]) to derive (2.9) by substituting directly into equation (1.2)

the Maclaurin series (2.4) and that for exp
(
ixt2

)
, interchanging the summation and integration

signs, and then using for all n the result∫ ∞

0
un exp

(
iu4

)
du = 1

4�
(

1
4 (n + 1)

)
exp

(
1
8 i(n + 1)π

)
n = 0, 1, 2. (2.10)

Although the answer obtained is correct, this simple ‘derivation’ makes two errors. (a)
Interchanging the summation and integration signs produces divergent integrals when k � 1 in
the series (2.4), and (b) the left-hand side of (2.10) is divergent for n = 3, 4, 5, . . . . However,
this ‘derivation’ can be made rigorous by the use of converging factors (see [17] for the case
of P(x, y)).
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2.3. Series expansion of J (x, y) in Fresnel functions

In equation (2.5), we expanded the integral Ik(x) (2.6) in the Maclaurin series (2.8), which
resulted in the double series (2.9) for J (x, y). An alternative is to express Ik(x) in terms of the
derivatives of a Fresnel function, thereby producing a single-series representation for J (x, y).

We first define the Fresnel function (x real)

F(x) =
∫ ∞

0
exp

[
i
(
u2 + xu

)]
du (2.11)

or equivalently

F(x) =
∫ ∞ exp(iπ/4)

0
exp

[
i
(
u2 + xu

)]
du. (2.12)

Differentiating equation (2.12) under the integral sign, with respect to x, k = 0, 1, 2, . . . times
(which is allowed [16]) and making the substitution u = t2, leads to

dkF (x)

dxk
= 2ik

∫ ∞ exp(iπ/8)

0
t2k+1 exp

[
i
(
t4 + xt2

)]
dt k = 0, 1, 2, . . . . (2.13)

Note that differentiating equation (2.11) under the integral sign (as was done in [10]) leads to
divergent integrals. Comparison of equations (2.6) and (2.13) shows that

Ik(x) = 1

2ik
dkF (x)

dxk
k = 0, 1, 2, . . . .

Substituting into equation (2.5) then yields the following single-series representation for
J (x, y):

J (x, y) = 1
2

∞∑
k=0

ik

22k(k!)2

dkF (x)

dxk
y2k. (2.14)

F(x) can also be expressed in terms of the standard cosine and sine Fresnel integrals. We
have from [18] (p 91, items (7.4.38) and (7.4.39))

F(x) = (
1
2π

)1/2
exp

(−ix2/4
) {

exp(iπ/4)

21/2
−

[
C

(
x

(2π)1/2

)
+ iS

(
x

(2π)1/2

)]}
(2.15)

where the definitions ofC(·) and S(·) are those of [18] (p 87, items (7.3.1) and (7.3.2)), namely

C(x) =
∫ x

0
cos

(
πt2/2

)
dt S(x) =

∫ x

0
sin

(
πt2/2

)
dt .

The case y = 0. When y = 0, the series (2.14) reduces to a single term

J (x, 0) = 1
2F(x). (2.16)

In particular, when x = 0, using equation (2.15) gives

J (0, 0) = 1
4π

1/2 exp(iπ/4).

This result also follows from equation (2.9) since �
(

1
2

) = π1/2 or from the integral (1.2) using
J0(0) = 1.

We can use known asymptotic approximations forC(x) andS(x) to derive simple formulae
for J (x, 0), which are valid for x → ±∞. When x → ∞, asymptotic approximations for
C(x) and S(x) are [19, p 431, equation (15)]

C(x) ∼ 1

2
+

1

πx
sin

(
1
2πx

2
)
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and

S(x) ∼ 1

2
− 1

πx
cos

(
1
2πx

2
)
.

Substituting these approximations into equations (2.15) and (2.16) shows that

J (x, 0) ∼ i

2x
x → ∞. (2.17)

Thus J (x, 0) damps to zero as x → ∞.
On the other hand, when x → −∞, we can use the identities [18, p 88, item (7.3.17)]

C(−x) = −C(x) S(−x) = −S(x)

to obtain from equations (2.15) and (2.16) the asymptotic result

J (x, 0) ∼ 1
2π

1/2 exp
[− 1

4 i
(
x2 − π

)]
+

i

2x
x → −∞. (2.18)

In this case, J (x, 0) is oscillatory as x → −∞.

3. Numerics

Our numerical computations for J (x, y) used a modified version of the CUSPINT computer
code [4]. This code, written in FORTRAN 90, computes cuspoid integrals and their first-order
partial derivatives, which are defined by

Cn(a1, a2, . . . , an−2) =
∫ ∞

−∞
exp

[
i

(
tn +

n−2∑
j=1

aj t
j

)]
dt (3.1)

and

∂Cn(a1, a2, . . . , an−2)

∂ak
= i

∫ ∞

−∞
tk exp

[
i

(
tn +

n−2∑
j=1

aj t
j

)]
dt (3.2)

respectively, where the aj are real, n = 3, 4, 5, . . . , and k = 1, 2, 3, . . . , n − 2. CUSPINT
first replaces the doubly infinite integral (3.1) or (3.2) by the sum of two infinite integrals on
[0,∞). For the first infinite integral (which is the one relevant to J (x, y)), a quadrature is
performed along the integration path

0 → R0 → R0 exp(iπ/2n) → M exp(iπ/2n)

where R0 and M are real, with R0 � M . This path avoids (for suitable R0 and M) the violent
oscillatory and exponential natures of the integrand of (3.1) or (3.2) in the complex t plane [4].
CUSPINT chooses suitable initial values for R0 and M and has the novel feature that it can
change R0 and M if this is necessary for a successful quadrature, i.e. CUSPINT implements
an adaptive contour algorithm [4].

It is evident that a modified version of CUSPINT can be used to compute values of J (x, y),
provided we can evaluate J0(z) in the sector 0 � arg z � π/8. We accomplished this by means
of the code BESJYH of Ardill and Moriarty (catalogue number ACYQ in the Computer Physics
Communications Program Library) [20]. BESJYH is written in FORTRAN IV. We converted
it to FORTRAN 90 so that it could be incorporated into CUSPINT. All the results in section 4
were obtained using the default accuracy/workload parameters described in [4]. Note that it
is only necessary to compute J (x, y) for y � 0 because of the symmetry relation (2.1).
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4. Results

Figure 1 shows perspective and contour plots of |J (x, y)|. The grid used is x = −8.0(0.2)8.0
and y = −8.0(0.2)8.0. Thus each plot required 6561 evaluations of J (x, y). The
corresponding contour plot for arg J (x, y)/deg is shown in figure 2. It is demonstrated in
the appendix that the caustic associated with J (x, y) is given by the equations

y = ±(−2x/3)3/2 and y = 0 for x � 0

which are also drawn on the contour plots in figures 1 and 2. Note that [10–12] did not include
the half-line, y = 0 for x � 0, as part of the caustic.

Table 1 reports values of J (x, y) on the grid x = −8.0(2.0)8.0 and y = 0.0(2.0)8.0; they
can be compared with the corresponding values for P(x, y) given in table 1 of [4] or in table 1
of [5].

It is evident from figures 1 and 2 that J (x, y) exhibits a complicated interference structure
inside the caustic branches given by 8x3 + 27y2 = 0, which is quickly damped on passing
outside these branches. Qualitatively, these plots are similar to those for P(x, y) shown in
figures 3–5 of [6]. This similarity can be understood as follows. The result (2.2) shows that
J0(yt) has the asymptotic approximation

J0(yt) ∼
(

2

πyt

)1/2

cos
(
yt − 1

4π
)

yt → ∞. (4.1)

Substituting this approximation into equation (1.2) gives

J (x, y) ∼
(

2

πy

)1/2 ∫ ∞

0
cos

(
yt − 1

4π
)
t1/2 exp

[
i
(
t4 + xt2

)]
dt y → ∞ (4.2)

    

    

    

Figure 1. Perspective and contour plots of |J (x, y)| on the grid x = −8.0(0.2)8.0 and
y = −8.0(0.2)8.0. The branches of the caustic are indicated by broken curves.
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Figure 2. Contour plot of arg J (x, y)/deg on the grid x = −8.0(0.2)8.0 and y = −8.0(0.2)8.0.
The contours are −180(30)180. The thick full curves mark the phase discontinuities where
arg J (x, y)/deg jumps in value from −180 to 180. The branches of the caustic are indicated
by broken curves.

which is similar to the following integral representation for P(x, y):

P(x, y) = 2
∫ ∞

0
cos(yt) exp

[
i
(
t4 + xt2

)]
dt.

However, the right-hand side of the result (4.2) is only a gross approximation to J (x, y)

because use of (4.1) implies that the contribution from the neighbourhood of t = 0 has not
been properly taken into account.

It should also be noted that the position of the largest maximum of |J (x, y)| is different
from that of |P(x, y)|. For the Bessoid integral, the largest maximum occurs at x = −3.0511,
y = 0 where |J (x, y)| = 1.0375, whereas for the Pearcey function, it occurs at x = −2.1986,
y = 0 where |P(x, y)| = 2.6351.

A striking property of figure 2 is the existence of zeros for J (x, y) that lie within the
rectangle |x| � 8.0 and |y| � 8.0. Their locations are given in table 2. It is also evident that
the zeros fall into regular patterns. Similar behaviour is observed for the zeros of P(x, y), and
has been analysed in detail by Kaminski and Paris [21]. It would be interesting to adapt the
analysis of [21] to the J (x, y) case.
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Table 1. Values of the Bessoid integral J (x, y) for the grid x = −8.0(2.0)8.0 and y = 0.0(2.0)8.0.

x y Re J (x, y) Im J (x, y)

−8.0 0.0 −0.782 47 −0.482 03
−6.0 0.0 −0.317 16 −0.911 85
−4.0 0.0 −0.897 28 −0.056 08
−2.0 0.0 0.807 85 −0.391 11

0.0 0.0 0.313 33 0.313 33
2.0 0.0 0.058 05 0.202 38
4.0 0.0 0.013 41 0.120 72
6.0 0.0 0.004 45 0.082 63
8.0 0.0 0.001 93 0.062 32

−8.0 2.0 0.325 82 0.086 60
−6.0 2.0 0.158 61 0.215 72
−4.0 2.0 0.185 55 −0.192 25
−2.0 2.0 0.220 44 −0.209 89

0.0 2.0 0.280 70 0.102 12
2.0 2.0 0.105 49 0.151 17
4.0 2.0 0.038 43 0.109 74
6.0 2.0 0.017 41 0.079 51
8.0 2.0 0.009 53 0.061 15

−8.0 4.0 −0.119 77 −0.108 15
−6.0 4.0 −0.126 29 −0.280 59
−4.0 4.0 0.117 44 −0.028 69
−2.0 4.0 −0.061 39 0.170 84

0.0 4.0 0.030 43 −0.133 47
2.0 4.0 0.136 89 −0.004 25
4.0 4.0 0.087 68 0.056 10
6.0 4.0 0.049 80 0.059 74
8.0 4.0 0.030 26 0.052 48

−8.0 6.0 0.028 22 −0.006 85
−6.0 6.0 0.312 46 0.094 71
−4.0 6.0 0.035 82 0.140 32
−2.0 6.0 0.077 19 −0.057 04

0.0 6.0 −0.101 02 0.046 26
2.0 6.0 0.000 95 −0.105 96
4.0 6.0 0.080 27 −0.042 78
6.0 6.0 0.072 56 0.007 00
8.0 6.0 0.052 99 0.025 05

−8.0 8.0 0.189 03 −0.060 47
−6.0 8.0 −0.169 49 0.136 30
−4.0 8.0 −0.096 71 −0.049 73
−2.0 8.0 −0.082 07 0.035 95

0.0 8.0 0.086 58 0.027 34
2.0 8.0 −0.084 96 0.024 92
4.0 8.0 −0.024 23 −0.076 23
6.0 8.0 0.038 87 −0.055 45
8.0 8.0 0.051 99 −0.021 48

Pearcey and Hill [10] computed values of JPH(x, y) ≡ πJ (x, y) using an early digital
computer (see [22–24] for historical background). They evaluated JPH(x, y) by summation
of power-series expansions in x and y and from differential equations to which JPH(x, y) is
a solution, i.e. the numerical methods employed in [10] were completely different to ours.
Pearcey and Hill reported contour plots for |JPH(x, y)/π | and arg JPH(x, y)/deg on the grid
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Table 2. Zeros of J (x, y) for x � −8.0 and 0 � y � 8.0. There is also a zero at x ≈ −8.012 and
y ≈ 6.072. For each zero (xz, yz), there is a companion zero at (xz,−yz).

x y

Outside the caustic branches 8x3 + 27y2 = 0
−2.3219 2.6179
−3.5270 4.5952
−4.4512 6.2849
−5.2300 7.8182

Inside the caustic branches 8x3 + 27y2 = 0
−4.7565 1.4191
−5.7830 1.5267
−5.7881 3.0870
−6.6156 4.6046
−6.6368 3.1740
−6.8999 1.2130
−7.3281 6.0184
−7.3653 4.6730
−7.6762 1.3011
−7.6981 2.7084
−7.9639 7.3559

−8.0 � x � 8.0 and 0.0 � y � 8.0. Our results in figure 2 for arg J (x, y)/deg agree closely
with those of [10]. However, for |J (x, y)| (shown in figure 1), we only obtain agreement with
[10] if the results in their contour plot for |JPH(x, y)/π | are multiplied by 2/π .

5. Concluding remarks

We have shown how J (x, y) can be evaluated numerically using a modified version of the
CUSPINT computer code. An essential requirement of our method is the ability to calculate
J0(z) in the sector 0 � arg z � π/8. Provided this can be done, the method is straightforward
to program on a computer and highly accurate results can be obtained.

It is also clear that our method can be applied to generalizations of J (x, y). One such
generalization, studied by Janssen [12], is the integral

I ′
α(x, y) = 2

∫ ∞

0
Jα(yt)t

α+1 exp
[
i
(
t4 + xt2

)]
dt −1 < α < 5

2

where Jα(·) is the Bessel function of order α. Note, for α = 0, we have

I ′
0(x, y) = 2J (x, y)

and for α = − 1
2 , we obtain

I ′
−1/2(x, y) =

(
2

πy

)1/2

P(x, y)

upon using the identity [13, p 88, equation (6.7)]

J−1/2(yt) = [2/(πyt)]1/2 cos(yt).

We have extended our computer code so that it can also handle the cases α = 1 and 2, as well
as α = 0.
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Janssen studied the asymptotic behaviour of I ′
α(x, y) using arguments of Paris [14]. In

particular, asymptotic expansions were obtained for x → ±∞ and y > 0 (equations (8) and
(9) of [12]). It is interesting to note that putting α = 0, then y = 0 in the first term of Janssen’s
expansions gives us the asymptotic approximations (2.17) and (2.18). Thus Janssen’s results
may be more generally valid than has been assumed in their derivation.
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Appendix

This appendix derives the caustic associated with J (x, y). The Bessel function J0(yt) has the
integral representation [13, p 57, equation (4.3)]

J0(yt) = 1

π

∫ π

0
exp(iyt cos θ) dθ.

It follows from equation (1.2) that J (x, y) can be written as the double integral

J (x, y) = 1

π

∫ π

0
dθ

∫ ∞

0
dt t exp[if (x, y; t, θ)]

where

f (x, y; t, θ) = t4 + xt2 + yt cos θ.

The caustic in (x, y) parameter space is obtained by eliminating real values of t and θ from
the stationary phase equations

∂f

∂t
= 0 and

∂f

∂θ
= 0

together with the Hessian determinantal equation
∣∣∣∣∣∣∣∣

∂2f

∂t2

∂2f

∂t ∂θ

∂2f

∂θ ∂t

∂2f

∂θ2

∣∣∣∣∣∣∣∣
= 0.

For f (x, y; t, θ), these three equations become

4t3 + 2xt + y cos θ = 0 (A.1)

−yt sin θ = 0 (A.2)

−yt cos θ
(
12t2 + 2x

) − y2 sin2 θ = 0. (A.3)

The solutions of equation (A.2) are y = 0 or t = 0 or θ = 0 or θ = π . We do not have
to consider for θ other multiples of π because they lie outside the range of integration. We
consider each solution separately.
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The solution y = 0. Equation (A.3) is satisfied since the left-hand side is zero. Equation (A.1)
becomes

2t
(
2t2 + x

) = 0

which has the solutions t = 0 or t2 = −x/2 (since t is real, this implies x � 0). Thus
{y = 0, x � 0} is part of the caustic. Note that for t = 0, the left-hand side of equations (A.1)–
(A.3) are all identically zero. Also, the stationary phase points for the y = 0 solution are not
isolated, since the above equations place no restriction on the value of θ .

The solution t = 0. Equation (A.1) becomes

y cos θ = 0 (A.1′)

with solutions θ = π/2 or y = 0 and equation (A.3) becomes

−y2 sin2 θ = 0 (A.3′)

with solutions θ = 0, π or y = 0.
Since we have already discussed the y = 0 case, we will assume that y �= 0. Now for

θ = π/2, equation (A.1′) is satisfied, but equation (A.3′) gives y = 0, which contradicts
our assumption on y, i.e y �= 0 is not possible, rather we must have y = 0 when t = 0.
Consideration of equations (A.1′) and (A.3′) for θ = 0 and π leads to the same conclusion.

The solution θ = 0. Equation (A.1) becomes

4t3 + 2xt + y = 0 (A.1′′)

whilst equation (A.3) gives

−yt
(
12t2 + 2x

) = 0. (A.3′′)

The solutions of equation (A.3′′) are y = 0 or t = 0 (both of which have already been discussed)
or 12t2 + 2x = 0, i.e. t = ±(−x/6)1/2. If we take the positive square root and substitute it
into equation (A.1′′), we obtain for the caustic branch

y = −(−2x/3)3/2 x � 0.

Similarly, using the negative square root, equation (A.1′′) gives for the caustic branch

y = +(−2x/3)3/2 x � 0.

The solution θ = π . The analysis for this case is very similar to θ = 0 and leads to the same
equations for the two caustic branches.

In summary, upon combining the above results, we find the equations for the branches of
the caustic associated with J (x, y) are

y = ±(−2x/3)3/2 and y = 0 for x � 0

which is the result quoted in section 4.
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